IVAL 34
BASED ON_PRODUCT. . (U) NORTH CAROLINAR UNIV AT CHAPE
HILL CENTER FOR STOCHASTIC PROC. = M 0’/SULLI
UNCLASSIFIED NOV 86 TR-163 AFOSR-TR-87-8035




T T W W W WY W T T T teme———

W TP VT OF I VO O YN

A mie o acs add e

... !

s
dlN = o
= o —

F——
_—

i B < = m
pl__ r_n...__._..-__;.g_,_;. mms__
e =
=

Loy

"

VN




ettt
AD-A176 956

SECLUM "> - _ASS. ¢ Ja° 0N CF TS PAE

REPORT DOCUMENTATION PAGE

e REPOMT SE-LM *~ -_ASS:F Ca’ ON o MESTRICTIVE MAAKINGS
S LUNC ASSIFIET
SEC.RITY S _aSS £ Jav OM AL =OA Ty 1 QSTRIQUTIONAVA. LABIL "> JF AEPORT
2a S8C 3porovec fcr Public Release; Distribution
NA Unlimiteq
2. DECLASEIS CAT ON COWNGRADING SCHEDULE

4 PRABSAMING DAGANIZIAT ON AEPOAT NuUMBERS) 3 MOMITORING ORGANIZATION AEPORYT NUMBENR(S;

Technical Report No. 163
Ga NAME OF PEABOAMING QAGANIZATION OFEiCE SYMBOL Toa naME OF MONITOAING OAGANIZATION
. - R 11 appusadis) ep
University of North Carciina AFQSR/NM
e ADOAESS Ciry. Swwew ang 2IP Cous ' o To. AODORESS (City. Stam end ZIP Code)
Center for Stocnastic Processes, Statistics Bldg. 410
Department, Priliips mall (36-4, Bolling AFB, OC 20332-6448
Chapel Hill, NC 27514
. NAME OF BUNDING/SPONSORING G5 OFFICE SYMBOL |9 PRAOCUAEMENT INSTRUMENT IDENTIBICATION NUMBEA
og_%Aaluﬁou (1 eppusshes
FOSK M F49620 85 C 0144
Ss. ADORESS City Stem ana 2IP Coas: 10. SOURCE OF SUNDING NOS. ‘
PACGRAM smoseCT | Tasx WORK UMY
8109' 410 SLEMENT NO. NO. NO. NO.
(K] ?'1’LL.I incwas Joqumty Clasmficoion) ) j o )
Statistics for the two-sample survival analvsi$ problem based on product limit estdimators

12. PeRSONAL AuTwoms) of the survival functions"

O'su'livan, M. and Fleminy, [.R.
13a TYPL OF REPOAT, 138 TiME COVERED 14 DATE OB AGPOART (Yr Me.. Dev/ 15. PAGE COUNT
. ) R LD Novemher 1956 33 P
techpical preprint smom ___10, S0 vo ! 3
16. SUPPLEMENTAAY NOTAT ON >

cosaT coOES 18 SUBLECT TERMS (Conmnus 0 weerss i/ necessery ena Larn ary by biped numberr . . .50 ¥

| [T 1¥-) SGROUE sus GA Kevwords: N/A \ \.-5 o
L9 88.0.000895.9.50.50040 : Ve

19 ABBTRACT Conimue 0a wrerse |/ 2 cemery g ion 8fy by Mees aumber) g 5 !o‘

>— A class of statistics for the two-sample survival

(:) analysis problem is introduced. The SW-statistic may be written

¢ > as the integral of a weighted difference in the estimated
survival functions, the integral being with respect to Lebesgue

L+J measure on time. Since the integral is with respect to real-time

-— the statistics are not generalized rank-statistics. However,

\l.-with an appropriate choice of weight function they are non-
parametric in the sense that weak convergence is guaranteed for

Ez.any underlying configuration cf survival and censoring
!E;rclstrlbutlons.

20 JISTRIGUTICN AVAILABIL Y OF ABSTRACT 21 ABSTAACT SECUAITY CLASSIFICATION

— - | . < TEren
UNC.ASSI® §0/UNL MITED A0 samt as me+  oTic Lsans — UNCLASSIFIE
230 VAME T8 AESPONS . BLE NOIVIOUAL 220 TELEPWONE NUMBEAR 22¢c. OFFICE SYMBOL
Ineinee Ares Codes .. »
Sagav wgwigcr ‘ - B . IH.962-2307 ;.. <« .5 AFOSR/NM
- s f_q:_\
lalall2al- AV RN b 2T - 1~ = sa ~e AN S € Mg e NC_ASSTETET

' ".‘r‘.!. R ‘1 *\_d*.‘*m" R& W



N . . . lwria - an sbt 0A0 AR ot oA B4 8- Adh Ad dad sl sei* Slata
»

19 cont'd.

Pd
A.('. ¢

P

Asymptotic distribution theory under the null is derived.
Consistency under a fixed alternative is shown. Efficacy
expressions under natural sequences of local alternatives are
given and an expression for the most efficient weight function is
developed. The asymptotic efficiencies of some specific SW-

statistics under the proportional hazards alternative are
examined,

r -
f.:’.‘ A

L4
-~

OSSN

{ LU,

o "4."'
VAP A

. ..)-".- 'L ’:'

AP PR
DR

:ﬁx

e

LY

?G’

>

s D I YL PL T AT N

AL LI L
‘ P

.
IR o 7, (oA A NI A NS SRR, X e

. . RN . .
« Cad, ¥ AR VLT S S e YA TN MR (‘. \\\:\ __r\.r o
£ W R .l. 4'\ IR LN YRR J-"*-' Ty o oA A L s N



| - CENTER FOR STOCHASTIC PROCESSES

) \‘ AFOSR‘TK‘ 87-003&

Department of Statistics

: University of North Carolina
Chapel Hill, North Carolina
‘
[}
L}
¢
tril . - i
L -
STATISTICS FOR THE TWO-SAMPLE SURVIVAL ANALYSIS PROBLEM
BASED ON PRODUCT LIMIT ESTIMATORS OF THE SURVIVAL FUNCTIONS
by
Margaret O'Sullivan
and
4 Thomas R. Flemingﬁgf}':ij"Ef?‘?f'ﬂ:.ﬁ‘."'
: s .,’.‘0':.'1::;?",“\;: ) -
- sl fomeublla ' 1
Sy vegign, b unliroted
- TLORET L
! Shier oy denl Infeirmitic .

Technical Report No. 163

November 1986

LA

{ .f")-:.»" TNV R A AR AT S B AR T AN Ay S S SR R A S R R RPN IEANL TR & S SN oy
. % L T Do e I N D R S LR . NE SO LR T S [N RS I e DR AN .
PPN I S A O R T R N R e . N . T Ry O N AR RN
[y oW A P L P SO PRI e A ST . ,';‘,\'1.".". DARRCE & LBt Tt .-u_\'- VLs A T



e

LAk o 4’0 4 2 amis s g

Polin® Sat et Saf ek ol Sl ash 4

ey

el

v,




. . ua N PR PO TR . - o . y Al talb Al dolt abl oh Aol A A B S n a0 i HLE A oV L A48 aih ate aid aih ail ol Ads ate she Sad
‘ 1 -

I 2 B v

STATISTICS FOR THE TWO-SAMPLE SURVIVAL ANALYSIS PROBLEM
v . BASED ON PRODUCT LIMIT ESTIMATORS OF THE SURVIVAL FUNCTIONS

by v DU —

Acoe TEEEN Mol n F'(] r

1

Y

I ) R

AR Margaret O'Sullivan grﬂfs gl p{ |

0 Center for Stochastic Processes ' @' '- &
University of North Carolina 1{* AR . ,

o Chapel Hill, NC 27514 Poaterie v

4 and [
]

Thomas R. Fleming e

Department o“ Biostatistics S ’ e
University of Washington, sc-32 . = ‘" "t

.o, Seattle, WA 9819 Sent S !

.,

(it
P

' ToPY
INSPECTED

6
A class of statistics for the two-sample survival
K analysis problem is introduced. The SW-statistic may be written
- as the integral of a weighted difference in the estimated
% survival functions, the integral being with respect to Lebesqgue
measure on time. Since the integral is with respect to real-time
the statistics are not generalized rank-statistics. However,
with an appropriate choice of weight function they are non-
parametric in the sense that weak convergence is guaranteed for
any underlying configuration of survival and censoring
distributions.

Asymptotic distribution theory under the null is derived.
Consistency under a fixed alternative is shown. Efficacy
expressions under natural sequences of local alternatives are
given and an expression for the most efficient weight function is
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& statistics under the proportional hazards alternative are
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INTRODUCTION K

Various nonparametric test procedures for the two-sample

censored data survival analysis problem have been proposed.

These include the weighted logrank tests (Gill 1980), their

supremum versions (Fleming, Harrington and O'Sullivan 1986), a

generalized Smirnov test (Fleming et al. 1980) as well as the

orthogonal-score-statistics procedure of Breslow, Edler and

Berger (1984). These procedures are based on generalized rank

statistics and hence they are certainly robust. Indeed, because

they are based on ranks they are invariant under monotone

increasing transformations of the data. However, such invariance

is not always a desirable feature (O0'Sullivan 1986). A 3

difference which is large may become negligible under a monotone

increasing transformation of the data (Figure 1). Hence rank-

statistics will not distinguish the two situations of Figure 1 in

their powers and yet intuitively in applications one would expect

a reasonable test procedure to detect the larger difference with

more power than the smaller difference. A class of non-rank-

based, nonparametric test procedures for this problem is proposed

here. The test statistics reduce to the scaled difference of two

generalized L-statistics in uncensored data. (The generalization

allows random as well as deterministic weight functions in the

usual definition of L-statistics).

The basic set-up and notation along with the SW-

statistics themselves are introduced in section 1. Section 2 is

concerned with asymptotic distribution theory for the numerator

and consistency results for the denominator of the SW-statistic.
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In section 3 these results are exploited to yield null

distribution theory, consistency under a fixed alternative and an
expression for the efficacy under a sequence of local
alternatives. Finally, since these statistics are indexed by a
set of weight functions, the choice of an efficient weight

function is discussed in section 4.
1. DEFINITIONS AND ASSUMPTIONS

Let ((X;;U;{); J =1,...,n4; i =1,2) be 2n independent
positive random variables where n = n, + n,. For i = 1 and 2,
suppose X ;; and U ;; have (right continuous) survival functions
Si(*) and C(*) respectively. As is usual, X;j;, U;; and fij =
min(X ; 4, U ;) will be termed the survival time, censoring time
and observation time random variables respectively for individual
j in group i. We wish to test the null hypothesis
Ho S,(*) = S,(+) based on the data (X ;j, I[X;; $U;;lz
j=1,...n;: i = 1,2), where I[A] denotes the indicator function
of the set A. This is the simple two-sample censored data
survival analysis problem under random censorship.

We will assume throughout that S () i = 1,2 are
continuous, (though not necessarily absolutely continuous). On
the other hand we allow the Cc () i = 1,2 tc be arbitrary
monotone decreasing functions on [0, © with C {(0) = 1. Thus

improper censoring distributions are allowed.

Let éi(-) and éi(-) denote the Kaplan-Meier estimators of

the survival functions S (') and C (') respectively. Define
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T, = sup(t: ((S,(t) ¥ S,(t)) ~ C,(t) A~ Co(t)) > 0) where xvy

denotes max(x,y) and x y denotes min(x,y). Both S, and S, are

'well-estimated' on [{0,T .] in the sense that for i = 1 and 2
E(S ((t)I[t <T.) = E(S(t)I[t <T.).

Thus [0,T . is a natural interval on which to compare S, and S ,.

o~

The interval [0,T . ] includes the interval [0,T] where

o,
‘c'.{'ul.',

T=T,AT,and T; = sup(t: (S (t) » C(t)) > 0}. Only

L4

information on [0,T] is used by the generalized rank procedures
mentioned above. Since the generalized rank procedures in
essence compare hazard functions, and hazard functions in both
groups can only be estimated when the risk sets in both groups
are non-empty (i.e. on {0,T]), then [0,T] is the natural interval
to use for these procedures. However, the interval [0,T ] is
more appropriate for procedures which compare survival functions.
Let ﬁ(') be a random weight function, measurable with
respect to c(fij, I(X;; <sU;3: 3 =1,...,n; i =1,2,} where
¢(A) is the c¢algebra generated by A. (ﬁ(-) estimates an
underlying deterministic lebesgue measurable weight function W( )
in a sense to be defined shortly). We define a member of the SW-
class of statistics to be

T,

SW W(u) (S ,(u) - S ,(u))du.

- n; + n,
@ 0
We will propose test procedures for the two-sample censored data

survival analysis problem which are based on these statistics.

Note that by a simple integration by parts, SW can be written as
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(! W(v)av)ds ,(t) - (§ W(v)av)ds ,(t)
0 0

n, + n,
0 0

in uncensored data, which is the difference of two

L-statistics if W is deterministic.

2. DISTRIBUTION THEORY FOR SW

Initially we will consider the component of SW from the
i *P group
TC A A
«Jnifo W(u) (S j(u) = S ;(u))du.
For ease of notation the subscript i will be dropped for now. We
seek distribution theory not only under the null but also under a
fixed alternative and under a sequence of local alternatives.
Thus we allow the configurations (s",¢" W™ to vary with n the
sample size.
Let 7" be the population parameter corresponding to T.
Thus
7" = sup{t: s"™t) » CcNt) > 0)
and for some limiting survival functions S(*) and C( )
T = sup{t: S(t) ~ C(t) > 0}.

We require that

(A1) " <7 and 1lim "= 7.
n-oo
Indeed in most cases of practical interest t" = 71 V¥ n.

Convergence of the configurations is also required in the sense

that for the survival functions S( ') and C( '), and the weight

o .
............
...................
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function W( *),

im [ W™E) - W(t) ||(g,r) =0
N9
(A2)
lim S ™t) = s(t) and 1lim Cc™t) = C(t) VvVt € ([0, 7]

2o n-oo
Assumptions which are to remain in effect unless otherwise
specified will be denoted by (A#) throughout the text, where # is
an integer.

The following theorem, which is basic in the derivation
of asymptotic distribution theory for SW, is a generalization of
Theorem 2.1 of Gill (1983). The proof follows the steps of
Gill's proof quite closely and hence will not be presented here.

Instead the reader is referred to Appendix 2 of 0'Sullivan

(1986), wherein a detailed proof is given.

Theorem 2.1

Let h", n=1,2,... and h be non-negative, non-
increasing, continuous, bounded functions on [0, 7" n =1,2,...

and [0, 7] respectively. Assume that

A

lim h(t) = h(t) 0 <t
n-o>oeo

T

(h(v)) ?
- d sS(v) = ¢°< o and
0 (S(v)) ¥c(v)) -

. (h"(v)) *
lim ¢ = 1lim - as (v) = ¢“

nse " nowo  Jdo (S"(V)) ¥c(v)) T
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(S(t) - S"(t))
If Z™Mt) = - n and Z®(t)= B
s "(t)

Lr/\ T dS(V) \\
_ |
0 (S(v)) ¥c(v)) )

for a standard Brownian motion B, then on D[O0, «]
(h™t AT)z™t ~T)) => h(t » NDZt ~» 7).
If also

lim Jto ld(h"(v) = h(v)) |
n-o

0O Yt < 7

then on D[O0, «]

AT AT
Jt h Y(v)dz “(v) => r h(v)dz ®(v)
0 0

and

AT AT
(2.2) Jt z "(v)dh “(v) => Jt Z ®(v)dh(v)
0 0

where, by definition

r h(v)dZ ®(v) = h(s)Z ®(s) - r Z ®(v)dh(v)
0 0 -

Conclusion (2.2) is most useful in determining asymptotic

distribution theory for Sw,.

Corollary 2.3

Suppose

" T
(2.4) lim f W™u)s "(u)du = J W(u)S(u)du < o
n-2o

0
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" 2
f W "(v) S "(v)dv)
u
2% (2.5) lim - ds "(u)
X nso 0 (s "(u)) ¥c"u)) -

“-:C:.J ) T T
>0 [L IW(V) 'S(V)dV)

‘Eﬁ = - ds(u) < o
-3 0 (s(u)) ¥c(u)) -

2

LY then on C[0, «)

0% e AT A
o (2.6) U"() = +n J W "(u) (S(u) - s ™(u))du => U )
0

108 where U® +) is a mean zero Gaussian process with variance
Iy function

trT

[ W(v)S(v)dv)
QYL u

o c¥(t) = -~ ds (u)
3 0 (s(u)) ¥c(u) -

t A~

o Proof.

pr" T
o Let h "(u) = Ju W"v)s "(v)dv and h(u) = J\ W(v)S(v)dv.
’“y t AT u
SN Then U "(t) = Z ™Mu)dh "(u). If the weight function W"( ‘) is
J0
Vf’ positive then the conclusion follows from (2.2) of Theorem 2.1,
@ ; € AT

%‘\ with U®(t) = Z ®(u)W(u)S(u)du. The result also holds, if

b Jo
W"( +) is not necessarily positive as is shown in Theorem 2.3.1

of O'Sullivan (1986).

AN
SN We now introduce the time-point r. If 7, < 7,.

~ i,i* =1 o0or 2, i #1i', define

W T{, if 8 (1) = 0 and C;(rp > 0

et Te =
F e T otherwise

e o e e T T e e T A T T T T T T T T L LA T T T N L T

VN T A o gy T T N e :
M i S K At ah MM R v Ry n : - . L




In almost all cases by Lemma A.1 7, is the limiting form of T .

. . P
N in that T 3 T.. Indeed in general T * T " 1.~ 71 ° 7.
"2
ﬁv Since U"( +) is tight in C[0, »], Theorem 4.2 of Billingsley
~
-'\
uﬁ‘ (1968) allows replacement of (2.6) with
)
2 R
o Nn WMNu)(S(u) - S (w)du => U " 7).
o, 0
Q")
4.
For the remainder of this paper, unless otherwise specified we
o~ assume that
rle
o (A3) T< o and [W() ife,9 < @
Vv
s where || ||, is the supremum norm over the set A. Certainly the
o
~ condition that 7 < « is always true in practice. The techniques
.'_:/-
W used in this paper are heavily dependent on the boundedness of
'n'.l
-
o W( ) and further work will be necessary to generalize the results
o
qs‘ to include random weight functions in SW which are unbounded in
PO
:i: the limit. Note however that Corollary 2.3 which deals with
o
;;' deterministic weight functions is general enough to allow
gt
:ﬂﬁ unbounded deterministic weight functicns.
L) ..'
‘}ﬁ Now we replace the deterministic weight function W "( )
o .
g: with its estimator W( ‘) a random weight function. Suppose
o
. ’ P
oS (A4) [ W () = WY( ')H[o,rc fr0 20 n - o
2
"\'
Ll Lemma 2.7
f'\';:: If
;.}:' - » n
o {1 W(u) - W"u) P
8 (2.8) 1 2o
o N (C™Nu)) T to,1 " rcﬁrc)
ﬁﬁ then
v'}
o4
ixﬂﬁﬁvﬁﬁvn?£¢$?fc3fdxﬂf-ﬂfq'v“nﬁf&ifﬂjﬁ\ﬁ¢?;uPﬂ.=43=P‘n*&“v:frvﬁ*-ﬁ”ﬂPl“--'~3*5*\”
\' U Ll L - .“ . . - - - B -
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1 L

v \TC Hr(: » n , n P
(W(u)-W "(u)) (S(u)-S "(u))du > o0
0

Proof ;

U

It is enough to show that ;'

‘: AN (C™Mu)) T (§(u) - Sn(u))iw(o,rl is bounded in probability f
(henceforth denoted by BP). Let h"(v) = s™v) N (C"v)) ~ and h(v) -
. -
¢ = S(v) dC(V)) = . Then by
)

T __

. -I (h(v)‘)z ds(v) =1 - S(1 < o and -
o 0 (S{v)) "CT(Vv) "_
3 e
) " :
-lim [ h “(v) ds"(v) = lim (1 - s™(1th) =1 - 5s(7. z
: nso dJo [ET(V)) HCTWVY) T n-o 9.
y Thus the conditions of Theorem 2.1 which guarantee convergence of fﬁ
b h™(+» "T)Z2"(+ * T) are satisfied, except that h and h" are not v
;f necessarily continuous but rather are left continuous. Lemma A
j 2.A.6 of O'Sullivan (1986) shows that under these conditions p
-. ’
d h"C+ "T)z"(+"» T) is stable (or 'tight') at the end-point 7, )
~ even if h and h" are only left continuous. That is to say, given p
N §>0and €> 0 3t* < rand n* such that ¥n 2 n* -
- -

PLIL b NC™D) (S =S™" ) I lrea,r1 > € < &

o !l-ﬁ]é(u) - S ™)) 1lto,t*1 is BP as a consequence of Theorem 2.1.

A PN
3 2 J@

L e
ot

Thus |1 NC"( ) (S(+) - S" ) llto,r1 is B.P. as required.

- > w v o

j The conditions on W( :) implied by (2.4), (2.5) and (2.8) :
i certainly guarantee the desired weak convergence. However more .
? direct and interpretable conditions on W( +) are desirable to .
f: facilitate the generation of SW statistics which are stable g
EE asymptotically. We seek conditions on ﬁ(-) which will yield SW v
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asymptotically stable for all choices of underlying survival and
censoring configurations (S"( ), ¢™ 9). 1In this sense the

proposed tests will be non-parametric.

Definition

For two sequences of stochastic processes X"(+) and Y "( )
defined on [0, ), by X™ ) = 0(Y"( ') we mean that 3 a constant T
such that, given ¢> 0 3 an integer n, with

PLIXx™t)| s Tly™Mt)| vt20, ¥vnmn, 21

t
L

Note that if X"(+) and Y"( ) are deterministic functions, then
the above definition reduces to the existence of a constant T

such that [X™t) | < Tly™t) ]| vt 20, Vn.

Theorem 2.9
Suppose

W' =o(((c"*~1M) ) 'Y, then on C[0, a

AT R
Nn r WMNu) (S(u) = s ™Mu))du => UZ(t)
0

Under the stronger cendition that
(A5) 3 &> 0 with
W) = oq(Eens sy ) Bt
and
W() = 0((C() ®*h,

then

’*TC A7c , , p
- N n
\n[ (W(u) ~ W"(u))(S(u) - S™u))du =~ 0.
0




Proof

By (A3), (2.4) is satisfied. For some constant T,

T T T T
I W) s(vyav [,r S(v)dv -
u u o
- ds(u) s -T? ds (v) N
(S(u)) ¥(c(u)) - 0 (S(v))?

= 2 ¢%s(")I[0 ¢ +< 1) < @ e

where cz(S(')I[O ¢ ¢+ < 7]) denotes the variance calculated from N

the survival function S( 9)I[0 < +* < 7] and the equality follows N

from Lemma A.2 of the appendix. Define iy

! T .
d [r W (v) IS(v)dv]2 &
X u
g(u) = - I[0 su < 7 f{
(S(u) °(C(u)) N
" :ﬂ
[r W (v) Is “(v)va ? »
: u s
g"(u) = - I[0 <u < 7M. N
(s "u)) “c(u)) " -
[
&
Also let Y, = X JI[0 ¢<X,< t" and Y = XI[0 <X < 7] where X, o
1 and X have survival functions S"(*+) and S( ‘) respectively. The :
‘ survival functions for Y ,and Y are (S™t)-s"( ™) and o
d ol
(S(t)-S(71) for t > 0 respectively. Since Y, 3 Y, g is t}
b
‘
continuous at 0, g has at most a countable number of disconti- ’
N
nuities on (0, ©® and S( ‘) is continuous on (0, «), then N

d
g(Y, 2>g(Y). Given €¢>0 3Ingand ty< 7such that ¥n 2n,,

I P(Y, sty > 1-e Also, lim [|g™(x) - g(x) ||(g,t 1 = O. Hence
r. nam d o
g™Y ) )-g(Y,) $ 0 ana so g™Y,) > g(Y). Boundedness of g "(Y ) -

uniformly in n yields lim E(g "(Y ., )=E(g(Y)) and hence (2.5).
n-oo
Finally we need to verify that the stronger condition

(AS) yields (2.3). (2.8) is a trivial consequence of (A4) unless
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5: C(tr ~r) =0, in which case we note that r= 7. Thus suppose
!
". C(nn =0and 7= 1., Given €>0 3t <7 such that 0 < (C'(to))a
(2=,

" < ¢2.

\: A A

S ’ W(u) - W"(u) W(u) - W"(u)

.p 5

| N (€ ™Nu)) to,1 A1, NC "(u)) ~ [0,tg A TAT]

AN A

O W(u) - W"(u)

P

- * n -
o (€ "(u)) Lty,T A Tc]

The first term on the right hand side converges to 0 in

“; probability as a consequence of (A4). For the second term 3

i

o constants T'; and T, such that
M. A

e W(u) - W"(u)

»

- —
< ¢ "(u)) (tg,Tr T.]
o~ 0 c
“~
.\
o .
C “(u) R

< Ty —_— (C(te) *+ Ty(c™Mtg) D °

J'::: (C (u)) [t ,7T)

>, —

*} < Ty e + T, ¢

Kal

D with probability at least 1 - 3¢ if n is large enough, using
W i
‘&f Theorem 3.2.1 of Gill (1980) for the first component. Thus
-\.” s n
o W(u) - W'(u)

e o P

K - » 0

NC "(u)) . |
9

[to,T A S |

2Ll

The final step in the derivation of asymptotic distribution

theory is to show that the contribution to SW over

el darteg ™
. R R R ARE]
X} 4304 ;

(T " T.," 1, T, is asymptotically negligible.

TnATC ’ ’
W(u) (S(u)~S "(u))du

rT , ) _
hj ) W(u) (S(u)-S "(u))du = f
T T, 71,

T, T,
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+ - j W(u) (S(u)-s "(u))du.
TN AT,

We will treat these two components separately.

Lemma 2.10

If
(A6) $(T - ™ is BP, then
, r"Ap €
sh_j W(u) (S(u) - s™u))du 4 0
TAT AT,
Proof.
For some constant T with high probability
_ Tn/(rc A A
n j W(u) (S(u) - S"u))du
T~ T, ~ T,

< T 'S = 8s™u) [le,s) |N(?"=T) | and

—

é(u) - S“(u)}!(o,,, 3 0 by Gill (1980) Theorem 4.1.1. 7

Remark. The uniform consistency of é(') on [0, 1) is stated but
not proved in the reference cited above. A slight modification
of the proof of Theorem 1, page 304, Shorack and Wellner (1986)
yields the result. An alternative proof may be obtained from the
author and will be included in a forthcoming monograph by
Fleming, T.R. and Harringdon, D.P. Condition (A6) holds very
generally at least under a fixed configuation, as is shown in
0'Sullivan (1986) using some results from extreme-value

emma 2.11
(A7) If 1, = 1, assume that -ﬁkrr - Tp is bounded, then

v e e e
L S A e,

" .".: SN P
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?.. — T c A A n P
- ~h . W(u) (S(u) - S™u))du > 0
-;.._ T" AT,
o
A Proof.
>
‘ ., — T [ A A — T 4 A
\ (2.12) W(u) (S(u) - S™u))du = - 4 W(u)s "(u)du.
" AT " AT,
j‘:'.:; Under a fixed configuration, either S( 17=0 so that (2.12) is
identically zero, or S(7>0. In this case
j- lim P[SA('I‘) = 0] = 0, lim P(CA(T) = 0] =1 and lim P(T, > 7] = 0 ;
IS n-oe n-o n-owo
- so the result holds.
. Under a sequence of local configurations, if 71, < 71,.
p:. for i = 1 or 2, then S(7;) > 0 and T, 5 T, = T, by Lemma A.1.
20 Hence lim P[T ., = T; ¢ 'r;‘ A r:] = 1 and the result holds. If ]
n->o
K T, = T,= 71 it is enough to consider 7" < 7 ¥ n.
t -
N ¢ A ~
P! ‘“‘rn W(u)s "(u)du | ¢ (77 = 7THSTTN [W(w) [[ . ‘
o T AT, (7,T.)
l"
- If S(7) = 0 then the result is proven. Otherwise S( 17>0 and
o c™t™ = 0 for n large enough. In this case CA( ™ -E 0 since
-\_:h » P A P —
" e = c™u) [lro,7y >0, and |W(w) [| 5 0. .
\:: (75T,
s
®
- We are finally in a position to give asymptotic distri-
L,
,',:':-f bution theory for SW. The natural condition
.:f
(A8) lim = p; >0
o n>o n
'.::EI is imposed. Note, that the assumptions listed so far were given
" without regard to a group subscript i. We assume that the condi-
L tions hold for both groups i = 1,2.
7
>
'Y
o
.IJ J‘-qu,.\-v-f,.l\(lf:

o

A

£ et t\c
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Lemma 2.13

S
-
-

-
v
b ':v"

-‘)'

nqn, Tc A A A A n n d 2
— (W(S, - S, -W(S"-58M)du - N(0, ¢?)
n, + n, 0 1 2 s W

x‘rf.‘:‘
-y

CRECR R

2
Ti

T
f W(v)S(v)dv)

u
ol s, where ¢? = - ) P3-i ds j(u).

G sv L 0 (5 i(u)) ¥c (w) "

Proof.

 <{
52 2

“~
o By Theorem 2.9 and independence

s
P o

g
By ;-
§LS

nn,

ATy n AT , n
[J‘ W "(u) (S {(u) -8 ;‘(u) ydu - y W "(u) (S ,(u)-S ’z‘(u) )du
0 0

n, +n,

I’y

4:5&.

"l.lk"c

=> e, Us(t) +  p, Ug(t) on C[0, o.
P

‘l'\\
L4
B~ BE TR

,

That T, * 7, » 1, the sequence is tight in C[0, ] and Theorem

. an
Dt el 3

1

TR
e AL
ot

4.2 of Billingsley 1968 together imply

R .
i,

F
U

TIATCA7C T{\TCATC

j W "(u) (S 4(u)-S "(u))du -J
0 ! 0

Us

nimn, A w
W N(u) (S ,(u)-s ’z‘(u) ydu |

)

n; + n,

x L]
2L
SR

”
< 2

d © ©
2 \‘PZU1(Tc)+"JP1 Uz(Tc)

LR B
‘. /- /l '.l

.
DA

.
Ty r

= ~ P2 I31’1("'1) + \ P1 tjoz("'z)-

Theorem 2.9, Lemma 2.10 and Lemma 2.11 then yield the required

A AN
AN
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Having established the asymptotic behaviour of the
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numerator the next task is to propose consistent estimators of
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gy USV . Let
L
A 2 i (J’P in o )2
7 .y = . n u W(v)S j(v)dv) / ,
.:_- P = - P3-j —ds 1(‘..1) .
~"; urp — n i~ 1 A A= A=
N i=1 S ;(u)S j(u)C j(u) )
\ 0
. S . .
. where p; = nyn. o,, is termed the unpooled variance estimator.
_.-::- [ A —
s In uncensored data with ﬁ(°) =1, JT W(u)Ss j(u)du = X ;, the sample )
Lo o 3
mean from the i 'P group and Lemma A.2 yields
& i (J‘I‘ i~ A )2 n i —
A n; u W(v)S {(v)dv N (X5 = Xy
":" - as j(v) = '
b, n;-1 A Ao - n;-1
' 0O §s i(U)S i(U)C i(U) j=1
[E the usual sample variance of survival times in the i *P group.
_:-‘ r»2 . . .
hf Thus ¢, , is the natural estimator of the variance of SW at least

in this classical case.
Under the null hypothesis it is tempting to substitute

§p, the Kaplan-Meier estimator calculated using the two samples

A A
pooled, for S; in o¢,, . The resulting

2 : h

8 A I a1y s 0.4
.:':- AT r"'U ANRR A RS

: ¢ (-ECWA( )S J(v)d :
n v v)dv -
» A P A
(72= - T‘ P3-1 dSp(u)
P n - 1 — A "= A=
i i=1 0 S p(u) S p(u)C j(u)
o) . . . . .
) is termed the pooled variance estimator. Indeed simulation
-.:.: Az A3
.:j results suggest that o, is a better standardization factor for SW
\I
-q(' r 2 . . ¢
y than o¢,, under the null in many cases in small sample. We defer
“al
:; discussion of small sample properties to another paper however.
Nh
e
o Theorem 2.14
) . r2 P 2
= (1) Tup ?  Tew
1:'--" 1
A
S0
Lo,
@

-
4

~~~~~~~

<
S

- N *
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n n
Under Hy: §;, =S, =8 Vn

A2 p 2

(ii) T, 3 Gay -

The proof of Theorem 2.14 is somewhat technical and is given in

a2
O'Sullivan (1986). Consistency of Tp

is proven only under the
null hypothesis since general results on the consistency of the
Kaplan-Meier estimator are known only under the random censorship
model. Unless the survival distributions in the two groups are
equal or the censoring distributions in the two groups are equal
then the random censorship model does not hold in the pooled
sample. Consistency of the Kaplan-Meier is basic in deriving
consistency of the variance estimators. Thus, consistency of ;;
is not proven in general but is shown only under the null.
Although consistency can also be shown for arbitrary config-
urations under the assumption of equal censoring distributions
(C: = Cg ¥ n), this assumption is very restrictive and we do not
consider it to be an important case.
3. NULL THEORY, CONSISTENCY AND EFFICACIES

The purpose of this section is to summarize the results
of Section 3 as they pertain to null distribution theory,
consistency and asymptotic behaviour under a sequence of local
alternatives. The following assumptions are made, for
i =1 and 2

(Al) ™" < 1, Vn, lim "= 71, .
! nl2o
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s
o\ (22) lim | [W"u) - W(u) [|(g,r 1 =0 ,
._ n-o i
)
( lim S"(t) = s ;(t) and lim C™t) = C(t) Vt € [0, 7],
. n’o ! nire !
Y (A3) T < @, |Iw(u)||[0,1'i]< ® ’
.-:;I
A P
R (A4) | [W(u) ‘W(u)||[o,rc/\ 7] >0
-
o (A5) 35 > 0 such that
o
£ n .
Y Wi = o(((Ci(ATY)) "B
» and W() = 0(((C () +3*%,
SN
Vi
""ﬁ — n
bO) (A6) % (T; - 7;) is bounded in probability .
.:‘.)‘
:* — n n
;;1' (A7) If T, = T, then 4 (1, - 7, 1is bounded
-
Ja
“\.J . n
! (A8) lim ——— = p; > 0.
:.. e] n-2eo n, + n 2
i..
‘e Under a fixed configuration (Al), (A2) and (A7) are
_::: redundant, and (A6) holds except in pathological cases. In
\;‘::. practice 7; < o and (AS5) implies that W( ) is bounded. (A8) also
.
" holds in general since the design of the experiment will usually
K- ensure that (n /n) is a fixed positive fraction. Thus, only (A4) A
[
LSt
-:-: and (AS) need be of real concern for the purposes of null
"\1
I distribution theory and for consistency.
:::j For a sequence of local alternatives it is most natural
o
~ {
143

Eh]
L 1]
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to consider the censoring distributions as fixed and the

l' A't
[

alternatives are specified in terms of the convergent sequences
of survival functions. 1In most cases of practical interest for
i=1 and 2, C (1) =0 and S;(71;) > 0, i.e. there is a positive
probability of surviving past the end of the study. Thus even
under a sequence of configurations (Al) and (A7) are redundant in
most cases of interest since 7? = 7; ¥n, i =1 and 2. As
discussed above for a fixed configuration (A3) and (A8) are
generally satisfied in pructice. Thus for a sequence of local

alternatives only (A2), (A4), (A5) and (A6) are of any real

concern in general.

(—

; Ty
Let SWUP = SW/ ¢? and SWP = SW/ vo?
up P

Theorenm 3.1

(1) Under the null hypothesis
d d
SWYP 5 N(0,1), and SWP? 5 N(0,1).

(ii) A two-sided test based on SW'P or SWP is consistent against
|

T
any fixed alternative such that {IOCW(u)(Sl(u) - Sz(u))du} > 0

(1ii) If under a sequence of local alternatives, for some bounded

function D( ) on [0, T,.),

: ngn, n n
! ————— (S j(u) = S y(u)) > D(u)
N ny;+n,

uniformly on (0, 7)), then

B T N S AR ot ’;*- K MRS -
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R P D T T T Ty Vs

I W(u)D(u)du
0

d
SWUYP 5 N , 1

Y 62

Sw

Proof

(1) This is a trivial consequence of Lemma 2.13 and Theorem 2.14

.. A 2 P 2 ’ 2 .
(11) Typ ? gy < ®so that oyp 1S BP. Also,
rI‘C ! [ ’ 2 ’ ’
. ? W(V)S p(v)dv | P P t ,
ot = - vdu ; | + d s ,(u)
P 7 7 | - - ‘
0 S ,(u)S H(u) L ¢ qu) ¢ J(u)
LS \2
Sp(v)va
u r
< =T . dS ,(u) for some constant

0 S ,(u)S p(u)
'with probability at least 1 - ¢ ¥n sn,

2

(1 vV 7, “ < o

Thus it remains to show that |SW |

1 A T
| ECW(u) (S,(u) - S ,(u))du - L W(u) (S ,(u) - € ,(u))du l
( I

i

AT
< 1 (W(u)=W(u)) (S ;(u) =S ,(u))du +

JTCw“(u) (S ,(u) =S ,(u))du
T

A
CTC

¢]

T
+ ” W) (S (u) ~ S ,(u))du
9T A T

The first term converges in probability to zero by (A3) and (A4).
Lemma A.1 and boundedness of W( ¢} prove that the last term

oy s . p
converges to zero in probability. Similarly since T, 5 7. unless

T,< T4_,with S (1) = 0 and C,;(7;,) = O (Lemma A.1), then the

1

I TN
;.f‘iu( d( 1.1




-y second term also is asymptotically negligible except perhaps in
LN this special case. In this special case, (taking i=1 without

DI loss of generality),

rcﬁ(u)s ,(1)du
T

1

JTC W(u) (S ((u) - S ,(u))du

T e

A

T(C,(Ty) "5*% T, - 1,| for some constant T,

o

¥
RS

oty Y
r

K

x

by consistency of C?;( 7,) for C ;( 7,). Thus

St
2
+ i
X s 2"

[r——— T ¢
{11+ n,

e

U

Vo

SW

l‘l

J W(u) (S 4(u) = S z(u))du > 0
0

)

"lnlnz

Yoy and hence [SW | }a

(iii) By Lemma 2.13 and Theorem 2.14 it is enough to show that

< T [
n lrl A n n P

b - W(u) (S ;(u)=S ,(u))du - W(u)D(u)du

'3 Nn,; + n,d0 0

W Now,

AN

L g -

‘ ._,1:: T ¢ T

a3 ngn, " n n

A | W(u) (S {(u)=S 4(u))du - W(u)D(u)du.

o

PN [T AT Te

'.':«.-'('. a n ln 2 A n n

\* . = W(u) (S {(u) =S 4(u))du - W(u)D(u)du,

'J,‘t‘ p

~ .

:.:-.' because p(T,. > 7] » 0. To see this note that under a sequence
S \'

AN

;;5«,. of local alternatives T, > . can only happen if 7, < 1,_;, for
,'.el.

. i=1 or 2, with C (7 = 0 and S(7;) > 0, in which case

';"l'

[

Y

e

‘l:.‘l.
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o
p )
oy i
2,
R p[¢.(r) =0) $1.
A
oS o " Te
o nn, . n n P
j (W(u) - W(u))(S,(u) - S,(u))du -0
~nt+ n, do
s
)
NS R n
\“.:, since j—u-—— |[ST(u) - S 4(u) |[(g,r , is bounded and (A4)
o vn;+n, ! ‘
.\..:
’\.u holds. Thus (4.2) is asymptotically equivalent to
w0 i CA TC Tc
:“, \ nqn, n n
j-x: —— W(u) (S {(u) =S 5(u))du - W(u)D(u)du.
‘.-,:. Nh; + n,d0 0
':'Ef a T, p
X = - W(u)D(u)du > o0
:::: .
. ~ ¢ Te
at i
My (7 |
0 | W(u)D(u)du |
o \JO
v Note that e(SWYP) = : is termed the efficacy of
J 9 sw
-,
'}:-_;? SW “P under the sequence of alternatives specified by D( °).
\ j'
.. ..
o, 4. EFFICIENT WEIGHT FUNCTIONS
Bt
o The objective in this section is to find a weight
s
j function Wopel ) which maximizes e(SW'P) over all possible weight
o
o functions W( ‘) for a fixed S(-), C,( ) and C,(+) and for local
2"
, alternatives specified by D( ‘). Since e(SW"? 1is invariant under
<,
o scalar multiplication of W( ') the constraint is imposed
~ o " a" (Ta W a g e e, e . .

1. ] s ¥ h , 4
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Sedaby

T T,
f W(v)S(v)dv P2 Py
u +
(4.1) 1 = ¢% = - - - ds(u) .
sV 0 S(u)s ~(u) C ,(u) C ,(u)
T

4
Direct maximization of (/ W(u)D(u)du) ? with respect to W( °)
o

subject to ¢? = 1 is a difficult problem in calculus of varia-

sW
tions and indeed the Euler-lagrange equations are in general not
solvable. An alternative approach is to transform the problem to
the maximization of e(SW"P) with respect to h( ‘) = ITwW(u)S(u)du,
subject to the additional constraint that h(7,) = 0. Some

regularity will be required. The optimal h( ‘) is denoted by

hopt(')'

Lemma 4.2

D(u)
If 1lim
*1. S(u)

< o, S(*) and D( ) are differentiable and

d S(u) #0 Yu ¢ (0, 7)), then

(u) ]
S 2(u) C ,(u)C ,(u) du s(u) /

a
o]
-,
—_
c
e
0
~
[
A
-~
o
-

piC(u) + pLa(u) d (S(u))
du

Proof

I

Let V(u) = D(u)/S(u). Since D(0) = 0, V(0) 0 and

integration by parts yields

\ '\'\'J\' -
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A Jhd Al 4o Aol Aol o i aol aad aoh Ang St Aoh Aod Sod 4.

TC
f h(u)V'(u)du

T, Te
f W(u)D(u)du = - J\ V(u)dh(u)
0 0

0]

PICa(U) + pF o(w) )
B

where V'(u) = 4 (V(u)). Let A(u)= - d @S(u))

du ‘du Sz(u)cz(u)c;(u) /
Then
[PT. )2 7. V' (u) 2
\f W(u)D(u)du | = I A (u) h(u)du
(do J 0 A(u)
[11c (V' (u)) ? J1c ,
< —_—du A(u)h ‘(u)du
Jo A(u) 0

T, (V'(u)) ?
= —_— — du
Jd 0 A(u)

where the first inequality is an application of the Cauchy-
S.hwartz inequality and the second equality follows from the
constraint (4.1). The inequa'ity is an equality if and only if

V' (u)
a ~A(u) h(u), u € [0, 71.).

A (u)

If lim h g ,,(u) # 0 then the solution requires h,,, to
utrtr,

have a mass point at r.. If censoring is continuous at r. or

S(1,) = 0 then certainly lim hgpe () =0 if V'(u) is bounded
utr,
on some (7.~ ¢ T.), ¢€>0. ‘However if h,p¢ is not continuous

at r. then an optimal weight function W( ') will not exist. Under

the assumption that h ;,.( ") is differentiable then the optimal

weight function Wopt which maximizes e(SW) is given by

.

h - . . - - - -
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A
: N 4 (D(t)/S(t)) S
9 1 S (t)C 4(t)C ,(t) dt
I w opt(t) a d_
X S(t) dt - - _d s(t) >
- piC 1(t) + pL,(t) dt -
S Even if an optimal weight function exists, Woptl ) need -
[}
), not satisfy the requ.iarity conditions of section 3. For example, R
J wopt(-) need be bounded on [0, 7,). However it is clear from 5?
I Corollary 2.3 that the weaker conditions (2.4) and (2.5) will -
. )
‘d yield weak convergence for ]
i .
i: 1 ‘ 'T 2 A A n n
y —_— nn, L opt(u) ((S 1(u) =S p(u))=(S y(u)=S ;(u))du
rl —
” J civ yn!+ n, do -
) since W p,4( ') is deterministic and T T, .= T, A 7,. Under a ji
" sequence of local alternatives 7= 71, so that it's asymptotic F»
L, -
9 efficacy is given by e(sSW'P). Thus Wope( ) I [+ €T T, truly -
: yields an optimal SW-statistic for a given S, €, and C, and ;
' sequence of local alternatives specified by D, under these mild ;
i conditions. ")
f Such optimal weight functions do not however yield non- i
4 parametric statistics, in the sense that for a fixed W,,, weak ;
S convergence of SW is not guaranteed for all choices of (S, C ., py
B Cc,. It is still informative to calculate the optimal weight s
' \
‘ function and indeed the behaviour of a particular non-parametric ;
.’ .
" SW-statistic can be explained in part by a comparison of the
’ nonparametric weight function with the optimal one.
L
_ A nonparametric weight function which we propose for
f: general use is given by <
g D
"
"y -4
. )
{
- - .’.’,.. < ., y ,‘1,.‘,_(,. .t P " . 4 » : L . o - v. . -_.v»_..'__ .-‘._ .. . N
R L R R R S e e

!‘F‘w‘ ‘
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piC () + oL ‘)
In uncensored data ﬁc(-) = 1 so that the corresponding SW
procedure is essentially a generalization of the z-test to
censored data. In the following example we compare the behaviour
of this SW statistic, and the optimal SW statistic to the locally

most powerful test under the proportional hazards alternative

with equal censoring distributions, namely the Logrank test.

Example 4.3

Let S (t) = (S .(t))%**!, a> -1. A sequence of local pro-
a 0

portional hazards alternatives is given by S:

S an( ") with a, = n, + n, for some constant a For
N DN,
any t such that S ,(t) > 0 then
nn,
(S™t) - STNt)) = - aS,(t)log S (t) + O
Ny + Ny : ‘ vy
~ -—a$s ,(t)logs ,(t) = D(t). If S(t)logs(t) < o then the
convergence is uniform on the set A.
If the underlying survival distributions are Welbull,
> 0, then D(t) = at e - and the convergence 15
uniform on [0, ». Simple algebra yields W, (t) = t "'

uncensored data and W, . (t) =1 + k(t, - t)t kT ot e 0, t 0,

under equal uniform censoring on '0,t ;. The asymptotic efficacy

IR N 'J‘f

5 ’ [ ‘.t L ad) ."A\"..

s ‘!




- of the (most efficient) Logrank statistic is given by

A r C,(u) C,(u) |
: e(lLgk) = - J - - ds ,(u) (Gill 1980),
0 pCIM) + of (W)

. so that the asymptotic efficiencies (A.E.) of SW . and SW,,, are
given by e(SW . /e(L gy and e(Swopt)/e(th) respectively. These
were calculated under a variety of configurations. The results

are tabulated in Table 1.

l. Table 1
® Asymptotic Relative Efficiencies under Weibull Proportional
" Hazards Alternatives
(.5,1) .98 1.00
(.5,2) .99 1.00
(.5,3) .99 1.00
(.5, .80 1.00
. (1,1) .94 1.00 ]
) (1,2) .97 1.00 :
P’ (1,3) .98 1.60
- (1, » 1.00 1.00 2
- (2,1) 87 1.00
- (2,2) .92 1.00
2 (2,3) .93 1.00 '
(2, o .91 1.00
(3,1) .83 1.00
(3,2) .87 1.00
(3,3) .86 1.00 .
(3, 2 .84 1.00 d

. 1enotes the uncensored case

In all cases examined SW, , Is fully efficient and SW .

maintains high efficiency across this broad range of survival

“ {’ " .. ) A‘lﬁA‘.“.i'.l 7 '. ..' .'l ‘s e .'— ..

-
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f% configurations. In the classical exponential scale family with

! ‘ no censoring W () =1 - Wg\') and the z-test is in fact

iﬁ optimal. For values of k greater than unity the z-test loses

igi efficiency in uncensored data. The of-imal weight function

53 emphasizes later differences in the survival functions more than
early differences and behaves less like W . (*) = 1 as k increases.
In censored data the AE of SW . also decreases as k increases,
again because W  mimics the behaviour of W,,, more closely for

i;‘ small values of k than it does for large values.

:
CONCLUDING REMARKS

X From the point of view of the applied statistician the

2 SW-statistics are an intuitively appealing class of statistics

Qi, for the two-sample survival analysis problem. Motivation for

“5 these statistics, results from small sample simulation s;udies

?? and some ideas on the choice of desirable weight functions from

}i, an applied point of view will be presented in a forthcoming paper

:; by the author. Extensions to the k-sample problem have also been

f?j developed (O'Sullivan, 1986).

.Eﬁ

- APPENDIX

fi:-i Lemma A.1

o

. T, o

Ej unless perhaps if 7, < 15_,, i =1 or 2, with § (7)) = 0 and

s
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~5 -
IL Ci(ty) = 0.

"~ Proof. A
o . P ‘
.}S , If r, = 7, then since T, ¢T,T,} and T; > 7; then (
': P - "
;‘ T. > 7.. Thus, suppose 7, < 71, If 7.= 71, then C (71, >0 \
N and S,(T, = 0. Hence, P(T,=T,] <P[C,(T, = 0] + P[T, 2T,
Y » 0 by consistency of él(Ti) for C;(Tl), and P(T.=T,;] » 1. 1In

~ _ 4
M the case that 7, < r,and 7. = 71, then either C,(7,) > 0, i
>y. Cy7ty =0and S,(1y) > 0, or C;(rl) = 0. In the former case, h
E P[T.,= T, =< P[§1(T1) = 0] + P[T, sT,] » 0. In the latter case

. N P
W if we also assume that S ,(7,) > 0 then again S (T,;) > S (1) > O

@

:5 so that Pp(T ,=T,] 20, and T 3 7, = 7.. The only case

~7 -

:é remaining is that of 7, < 7, S,(7;,) =0and C, (r1y) = 0. 1In
\.’

general there is no guarantee that T . converges in this case.

Lemma A.2

If S =1 - F is an arbitrary right continuous survival

function on [0, ® and the variance of F denoted by ¢? is finite, ;

J';.J
'QZ then ,
" ,
v ® © 2
/] S(u)du
-_::. v
o e? = dF (v) )
o 0  S(v)s7(v)
% Proof
T X 2
;:: / S du
'_-::‘_ v
v, For any x ¢ [0, o) let a:== dF(v). Let

0 S(v)S (V)

(T, n=1,2,...) be a sequence of real numbers in [0, o such that ]
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’N o _ ,
' T,< T Vn, (T, is increasing and 1lim T, = T = sup{s: S(s)>0}.
n->o :
N2 L T h 2
! S(u)du .
N \ .
o? = dF (v)
X T, 40 S(V)S ~(V)
{': p T n T n 2
O = ! s(u)du| ds~}wv)
:::_ Jd 0 v
T n 2 T n n T n
ap ! S(u)du (J‘v S (u)du)
h = v + 2 S (v)dv
i) 0 S(v) )
e S(v) ]
.‘ n
g = - S(u)du) + 2 (J‘du)S(v)dv
T 0 0
< ;
:'_, ( T n 2 T n 3
v = - [/ s(u)du) | + { S(v)dv? '
’ 0 0
e T, © ©
o lim {/ S(u)du = [ S(u)du = { u dF(u)
. n*eo 0 0 0] i
.._:.. ‘
- and .
"': Tn 2 Thn
ot lim [ S(v)dv?=1lim |T s(T,) + [ u?dF(u) | \
1 nro O nyo \n 0
&\ If T < o then
~
:-?' T, T ®
i\ lim § S(v)dv?=T2s7(T) + fu?dF(u) = [ u&F(u).
o nso 0 0 0
h
‘ If T = o then
e .
b \-' ) 2 . 2 i
. lim T S8(T,) =0 since ¢° < ® '
f' n>o n .
)
o and
"./':
b
\ .
;ﬁ
@
);‘ ‘
‘- R ; AT ’ ~ ‘:‘ :.':_::_\:;-.;-{_-_r : o Cn N 2 : LSRRI
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(2]
(9]

T n ® :
1im / u?dF(u) = f u@XF(u). )
n>e 0O 0

FE g e

oy
P

Hence

[+ o]
lim ¢2= f u?dF(u) - (! u dF(u)) 2= o2
n-2o Tn 0 0

a

0 e
V20N B

@© [

(/4 S(u)du) -
- But 1lim o2 = dF(v) by the monotone .
Ay nso T, 0 S(V)S (V)

convergence theorem yielding the desired result. -
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